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ABSTRACT

Motivation: Microarray technology has been widely applied in

biological and clinical studies for simultaneous monitoring of

gene expression in thousands of genes. Gene clustering analysis is

found useful for discovering groups of correlated genes potentially

co-regulated or associated to the disease or conditions under invest-

igation. Many clustering methods including hierarchical clustering,

K-means, PAM, SOM, mixture model-based clustering and tight clus-

tering have been widely used in the literature. Yet no comprehensive

comparative study has been performed to evaluate the effectiveness of

these methods.

Results: In this paper, six gene clustering methods are evaluated by

simulated data from a hierarchical log-normal model with various

degrees of perturbation as well as four real datasets. A weighted

Rand index is proposed formeasuringsimilarity of two clustering results

with possible scattered genes (i.e. a set of noise genes not being

clustered). Performance of the methods in the real data is assessed

by a predictive accuracy analysis through verified gene annotations.

Our results show that tight clustering and model-based clustering

consistently outperform other clustering methods both in simulated

and real data while hierarchical clustering and SOM perform among

the worst. Our analysis provides deep insight to the complicated

gene clustering problem of expression profile and serves as a practical

guideline for routine microarray cluster analysis.

Contact: ctseng@pitt.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Microarray gene expression data allow us to quantitatively and

simultaneously monitor the expression of thousands of genes

under different conditions (Brown and Botstein, 1999). Genes

with similar expression pattern under various conditions or time

course may imply co-regulation or relation in functional pathways.

Identification of such groups of genes with similar expression pat-

terns is usually achieved by exploratory techniques such as cluster

analysis (a.k.a. unsupervised machine learning). A total of n genes

are assigned into K clusters of similar expression patterns given a

dissimilarity measure (usually correlation-based or distance-based)

between any two genes. Similarly one can cluster samples to look

for patients with similar expression signature in order to discover

unknown subtypes of a disease (Sorlie et al., 2003). A further

aggressive approach known as bi-clustering or two-way clustering

searches for groups of genes that have similar expression pattern

only in a subset of samples or time periods (Cheng and Church,

2000). These analyses usually provide a good initial investigation in

most of the microarray data before actually scrutinizing into specific

pathways or genetic mechanisms.

In addition to cluster analysis, several advanced methods are

developed to discover gene co-regulation or interactions that direct

correlation of gene pairs may not be able to capture. Zhou et al.
(2002) proposed an idea of transitive expression similarity where

two genes with low direct correlation but with high correlation

along a transitive pathway can be identified. Li (2002) proposed

another idea of liquid association to capture pairs of genes with low

direct correlation but their correlation becomes high when condi-

tional on certain cellular state or the expression of a third gene.

Although these methods help to capture many potential co-

regulation information that gene clustering may not reveal, gene

clustering remains an important and essential component in almost

every microarray data analysis project. It usually serves as a first-

step categorization and exploration of the genes in the data. Visu-

alization of the clusters also provides initial validation of the data

quality and helps to elucidate the inter-correlation structure and

expression changes across the samples.

Many gene clustering methods have been proposed and applied in

the literature. Hierarchical clustering (Eisen et al., 1998), K-means

(MacQueen 1967; Hartigan and Wong, 1979), partitioning around

medoids (PAM; a.k.a. K-memoids) (Kaufman and Rousseeuw,

1990), self-organizing maps (SOM) (Kohonen, 1990; Tamayo

et al., 1999) are traditional algorithms and are among the most

popular ones in microarray analysis. Recently some methods

have been proposed to allow a noise set of genes (or so-called

scattered genes) without being clustered. This is in view of the

fact that very often a significant number of genes in an expression

profile do not play any role in the disease or perturbed conditions

under investigation. Forcing all these genes into cluster formation

can introduce more false positives and distort the structure of

identified clusters. Model-based clustering (Yeung et al., 2001a;
Fraley and Raftery, 2002b; Medvedovic and Sivaganesan, 2002;

McLachlan et al., 2002; Medvedovic et al., 2004) and tight

clustering (Tseng and Wong, 2005) are two examples among this

category. The former one is based on a mixture Gaussian
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model with a component of homogeneous Possion process for

scattered genes (Fraley and Raftery, 2002b) and rigorous statis-

tical inference tools including parameter estimation and model

selection are available for the method. The later one utilizes a

repeated resampling approach to provide better robustness and

directly searches for tight clusters. Descriptions of various gene

clustering methods and their pros and cons are discussed in

Supplementary Material.

A common practical issue in the problem of gene clustering of

microarray data is the choice from many available methods and

the choice of the corresponding parameters in the methods. It is

well-known that varying parameters such as the number of clusters

or even varying the random seed in the optimization routines in

some clustering methods can produce very different results. Several

resampling techniques have been applied to validate the clustering

robustness and to provide more stable clustering (Tibshirani et al.,
2001; Dudoit and Fridlyand, 2002; Smolkin and Ghosh, 2003;

Monti et al., 2003; Tseng and Wong, 2005). Wu et al. (2002)
have proposed a pooled analysis of thousands of clusters accumu-

lated from various clustering methods and different parameter

settings applied on the same data. By combining information of

multiple clustering results, such pooled analysis is shown to

provide better annotation prediction. It, however, still remains

unclear what methods should be chosen to generate clusters for a

better pooled analysis. In general, there is a need to understand

the effectiveness of different clustering methods applied in gene

clustering of microarray data.

To the authors’ knowledge, none has performed such compre-

hensive evaluation. Yeung et al. (2001b) proposed a jackknife

approach for within-system validation and comparison. Recently

Handl et al. (2005) gave a general review of issues in clustering

validation. In this paper, we have compared six widely used

gene clustering methods by simulated data and real data. A

weighted Rand index for comparing two clustering results with

possible scattered genes was developed for performance evaluation

in simulated data. In the real datasets we applied a predictive

accuracy analysis without estimating the number of clusters (similar

to Wu et al., 2002) to compare different methods. The result

shows that methods allowing scattered genes seem to provide

better accuracy and robustness in gene clustering while popular

methods with visualization advantages, such as hierarchical

clustering and SOM, have worse performance and should be

used with caution in practice. The study not only demonstrates

effectiveness of the methods but also provides deeper insights to

the nature of the algorithms and their feasibility to gene clustering of

microarray data.

2 METHODS

Suppose X denotes the microarray data matrix with n genes on the rows

and d samples on the columns. In the following discussion we assume

that the data matrix X is pre-processed and normalized (Tseng et al.,

2001; Yang et al., 2002). Each gene vector is standardized to have mean

0 and SD 1 so that Pearson correlation and Euclidean distance of any

two gene vectors are essentially equivalent (Tamayo et al., 1999). Cluster

analysis aims at grouping these n genes into K clusters such that genes in

the same cluster have similar expression patterns. Formally let x1, x2, . . . , xn
denote n gene vectors, each of dimension d; the problem is to assign these

d-dimensional vectors into K disjoint subsets C1, C2, . . . , Ck of sizes n1,

n2, . . . , nK respectively, such that
PK

i¼1 ni ¼ n . We denote a clustering result

as a partition PK(X,C), which is characterized by the data matrix X, the
number of clusters K and C ¼ (C1, C2, . . . , Ck). Most of the commonly

used clustering algorithms require the number of clusters K to be known

a priori. The problem of estimating K will be illustrated in a later subsection.

A brief discussion of the clustering methods including hierarchical cluster-

ing, K-means, PAM, SOM, model-based clustering and tight clustering is

given in Supplementary Material.

Implementation of clustering methods

We have used ‘hclust’ and ‘kmeans’ functions in ‘stats’ library of R

(R Development Core Team, 2004) for Hierarchical clustering and

K-means respectively. Libraries ‘cluster’, ‘som’ and ‘mclust’ (Fraley and

Raftery, 2002a) were used for PAM, SOM and model-based clustering

respectively. Tight clustering routine was obtained from the original author’s

website: http://www.pitt.edu/~ctseng/research/tightClust_download.html.

We discuss more details of computational issues and implementation of

‘mclust’ in the Supplementary Material. In general application of ‘mclust’

in real datasets needs special care to avoid singularity or naı̈ve local

minimum results.

Estimation of number of clusters

Many methods for estimating the number of clusters have been proposed

in the literature. Milligan and Cooper (1985) performed comprehensive

comparison of >30 methods. In general a method may perform better

than another method in a particular probability distribution setting but

becomes worse in another data setting. Dudoit and Fridlyand (2002) intro-

duced a resampling-based method known as CLEST to estimate the number

of clusters and applied it in microarray analysis. However, estimating K is

usually found very difficult, if not impossible, in a real microarray data

especially when performing gene clustering. This fact also agrees to the

biological intuition that the underlying genetic interactions in an organism

are so complex that the definition of gene clusters and the exact number of

clusters K are vague. In this paper, the true K (K ¼ 15) is supplied to the

algorithms in the simulated data. For the real data, we try to avoid such a task

by running clustering with varying K (K ¼ 5–30) and pooling the results to

assess the effectiveness of different methods.

External indices for comparison of two partitions

One of the evaluation criteria for gene clustering methods is based on their

ability to reconstruct the true underlying cluster structure, if known. In

simulation studies the true underlying cluster structure or the partition of

the data is known. The performance of a clustering method can be evaluated

by the similarity of its resulting partition and the true partition. Several

external indices are available in the literature (Dudoit and Fridlyand,

2002) for this purpose. Here we describe a popular similarity measure of

two partitions known as Rand index (Rand, 1971; Hubert and Arabie, 1985)

and extend the measure to accommodate situations where a set of scattered

genes may exist without being clustered.

Consider two partitions PR(X,CR) and PC(X,CC) with the group labels

CR ¼ {u1, u2,. . . , uR,uR+1} and CC ¼ {v1, v2, . . . , vC,vC+1} where uR+1
and vC+1 are the scattered gene sets in respective partitions. Suppose

PR(X,CR) is the underlying true clustering structure and we want to evaluate

the performance of PC(X,CC). The cross tabulation of the two partition can be

represented as in the contingency table (Table 1). The entry nij denotes the

number of genes belonging to the i-th group ui in partition PR(X,CR) and j-th

group vj in partition PC(X,CC). The original Rand index (Rand, 1971) was

proposed for the situation when no scattered gene sets exist in both partitions

(i.e. uR + 1 ¼ vC + 1 ¼ f and n(R + 1)� ¼ n�C + 1) ¼ 0). A pair of genes is called

concordant if they are in the same cluster in both partitions or if they are not

in the same cluster in both partitions. Rand index is then defined as the

proportion of concordant gene pairs in two partitions among all possible gene

pairs. It is easily seen that, Rand index can be simplified to the following
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formula:

rðR‚CÞ ¼ 1þ

�PR
i¼1
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j¼1 n

2
ij � 0:5
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i¼1 n

2
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j¼1 n

2
�j

��
�
n
2

� :

It is usually preferred that such an external index is standardized to have

expected value zero when the partitions are randomly generated and takes

maximum value one if two partitions are perfectly identical. This results in

the modified Rand index (Hubert and Arabie, 1985):

RandðR‚CÞ

¼
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When at least one of the partitions generate scattered gene sets (uR+1 6¼ f or

vC+1 6¼ f), definition of modified Rand index has to be extended. A possible

extension is to consider both scattered gene sets as regular clusters in the two

partitions and define

Rand�1ðR‚CÞ

¼
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This index, however, treats scattered genes with equal importance as the

clustered genes in concordance evaluation and results in bias against meth-

ods without scattered genes especially when n(R+1)� is large.

Another simple alternative is to ignore all scattered genes in either par-

titions (i.e. considering the Supplementary Table 1) and define the new

modified Rand index only based on intersection of clustered genes of the

two partitions:

Rand�2ðR‚CÞ

¼

PR
i¼1

PC
j¼1

�
nij

2

�
�
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where ~nni� ¼ ni� � niðCþ1Þ‚~nn�j ¼ n�j � nðRþ1Þj and ~nn ¼ n�P
fi¼Rþ1 or j¼cþ1gnij: This index is, however, biased against methods with

a scattered gene set. For example, suppose n(R+1)� is large and {v1,

v2,. . .vC,vC+1} is a clustering result that contains empty scattered gene set

[n�(C+1)¼ 0]. If we have an extreme case that R¼ C and ui� vi(i¼ 1, . . . ,R),

then Rand�2ðR‚CÞ always equals 1 despite the fact that {v1, v2,. . .vC} contains
many scattered genes (false positives) in the clusters.

Here we propose a weighted Rand index using weighted average of the

two measures. The weighted Rand index given in Equation (2) will be

applied in the analysis hereafter:

Rand�ðR‚CÞ ¼ l · Rand�1ðR‚CÞ þ ð1 � lÞ · Rand�2ðR‚CÞ ð2Þ

where l ¼ j uRþ1 [ vCþ1 j /n ¼ ðnðRþ1Þ� þ n�ðCþ1Þ � nðRþ1ÞðCþ1ÞÞ/n and j · j
denotes the number of genes in the gene set. Note that both Rand�1ðR‚CÞ and

Rand�2ðR‚CÞ and thus Rand�(R,C) take maximum value 1 when PR(X,CR)

and PC(X,CC) are perfectly identical and have expected value 0 when

PC(X,CC) is a random partition. When mR+1 ¼ vC+1 ¼ f, Rand�(R,C),
Rand�1ðR‚CÞ , and Rand�2ðR‚CÞ all reduce to the original modified Rand

index, Rand(R,C) in Equation (1).

Annotation prediction by cluster analysis

Annotation prediction of novel genes is one of the initial and useful applica-

tions for gene clustering results. Intuitively if an unexpectedly large number

of genes in a cluster belong to a specific functional category ‘F’, then genes

in this cluster are more likely to be relevant to function ‘F’. Suppose a total of

G genes in the genome are analyzed in the microarray experiment among

which m genes are known to belong to a particular functional category ‘F’.

Within a cluster of size D genes, h genes belong to the functional category

‘F’. Under the null hypothesis that annotated genes are randomly distributed

in clusters, h follows a hypergeometric distribution (Tavazoie et al., 1999).

The P-value (i.e. the probability of observing h or more annotated genes in

the cluster) is calculated as

P½X � h� ¼ 1 �
Xh�1

i¼0

�
D
i

��
G � D
m � i

�.�
G
m

�

Intuitively unexpected large h will result in small P-value indicating that

majority of the genes in the cluster might belong to the functional category

‘F’. Given a pre-defined threshold d which is determined after multiple

comparison correction, all genes in the cluster are assigned (predicted) to

‘F’ if its P-value is less than d. It is noted that a cluster can be annotated to

more than one functional category by this procedure.

Evaluation of gene clustering by functional prediction

accuracy

Since the underlying true partition is unknown in real microarray data, the

weighted Rand index cannot be used to evaluate different gene clustering

methods. Instead the validated annotation from biological databases can be

used. Another complexity commonly encountered while comparing cluster-

ing methods is the choice of the number of clusters K. Wu et al. (2002)
proposed a method for functional annotation prediction of clusters by pool-

ing results from several clustering algorithms and various K. To avoid the

sensitivity of estimation ofK, here we propose a similar pooling criterion and

a plot of predictive accuracy for comparing clustering methods.

Suppose, based on a biological database, a number of genes in the

microarray data are annotated as belonging toM distinct functional categor-

ies and the remaining genes are ‘unannotated’. For example, six disjoint

functional categories containing 104 genes are presented in Supplementary

Table 2 (Spellman et al., 1998). Consider a K-cluster solution from a par-

ticular clustering algorithm. The clustering result and the functional categor-

ies of the 104 genes can be cross tabulated as in Table 2 (K ¼ 5). Here some

genes belong to a cluster of ‘unannotated’ category (F7) and the clustering

method may or may not group some genes as ‘scattered’ genes (vnoise). For a

given K-cluster solution and a specified d, let nij (i ¼ 1, 2, . . . ,K and j ¼ 1,

2, . . . ,M; ‘noise’ genes and ‘unspecified’ functional category are not con-

sidered) denote the number of genes in cluster i and functional category j and

pij,the corresponding P-values obtained from the null hypergeometric dis-

tribution. We assign all the genes in cluster i to functional category j, if the
corresponding pij values are below the threshold level d. Thus for the cluster

i, with total number of genes ni�, define, vpKi ¼
P

fj:pij<dgnij as the ‘verified

predictions’. Therefore for the entire K-cluster solution, the total number of

Table 1. Cross tabulation of two different partitions

v1 v2 . . . vC vC+1 Total

u1 n11 n12 . . . n1C n1(C+1) n1�
u2 n21 n22 . . . n2C n2(C+1) n2�
..
. ..

. ..
.

»
..
. ..

. ..
.

uR nR1 nR2 . . . nRC nR(C+1) nR�
uR+1 n(R+1)1 n(R+1)2 . . . n(R+1)C n(R+1)(C+1) n(R+1)�
Total n�1 n�2 . . . n�C n�(C+1) n��¼ n
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‘verified predictions’ is given by VPKðdÞ ¼
PK

i¼1 vpKi ¼
PK

i¼1

P
fj;pij<dg nij.

The total number of ‘predictions made’ is given by

PMKðdÞ ¼
PK

i¼1

P
fj:pij<dgnij. We define the accuracy of a clustering method

to predict functional annotation of genes as AK(d)¼VPK(d)/PMK(d). Since

the number of clusters K is not known, the accuracy of a clustering method is

estimated by pooling solutions from multiple K; the overall accuracy for a

given d is defined as AðdÞ ¼ VPðdÞ/PMðdÞ ¼
P

K VPKðdÞ/
P

K PMKðdÞ . By
varying the P-value threshold d, we obtain a curve of the total number of

‘predictions made’ (PM(d)) versus accuracy (A(d)). In general, a smaller d

results in fewer numbers of ‘predictions made’ but higher ‘accuracy’ in a

given clustering method. Clustering methods that generate curves with

higher accuracy (i.e. above the other curves) have better performance

(Fig. 3). We especially note that success of this comparative tool greatly

depends on the quality of annotations from independent resources and

whether the sample perturbations in the experiment induce distinct expres-

sion patterns for each investigated functional category.

Stochastic model for simulated data and perturbation

The general dependence structure of a microarray data is very complex

(Klebanov et al., 2006). We have simulated large datasets and perturbed

them in such a way to resemble real microarray gene expression data for

evaluation purpose. Totally 15 clusters of genes C�¼ (C1, . . . ,C15) with

dimension d¼ 50 samples are simulated. The cluster size nc(c ¼
1, . . . , 15) is generated from nc � 4 · Poisson(l). Analyses of many real

datasets have reported that the empirical distribution of expression levels is

approximately log-normal or sometimes with a slightly heavier tailed

t-distribution depending on the biological samples under investigation

(Li, 2002). In this paper we use a hierarchical log-normal model for simu-

lation of expression values in a cluster Cc (c ¼ 1, . . . , 15) as the following:

(1) Periods of constant expression: A vector of cluster template for cluster

Cc is created with four periods of constant expression of size m1, m2,

m3 and m4. The sizesmk (k¼ 1, . . . , 4) is from a uniform distribution

such thatSmk¼ d andmk> 2. An initial templatewith constant pattern

in four periods is simulated from log ðmðcÞ
k Þ eNðm‚s2Þ (the initial

template in Fig. 1A).

(2) Sample variability and gene variability: Sample variability ðs2
s Þ is

introducedand thecluster templateT
ðcÞ
j (j¼1, . . .15) is generatedfrom

log ðTðcÞ
j Þ eNð log ðmðcÞ

k Þ‚s2
s Þ , where j is such that m1 þ . . . þ

mk�1 < j � m1 þ . . . þ mkðm0 ¼ 0Þ (the cluster template in

Fig. 1A). Then for each gene vector i(1� i� nc) in sample j, the

gene variability is added and expression values are generated as

log ðxijÞeNð log ðTðcÞ
j Þ‚s2

0Þ (the cluster of genes in Fig. 1A).

(3) Repeat steps 1 and 2 to simulate each cluster of genes Cc (c ¼
1, . . . , 15). In this paper m ¼ 6, s ¼ 1, sS ¼ 1.0, s0 ¼ 0.1, and

l¼10 are used.

In addition to genes with cluster patterns, a number (0, 5, 10, 20, 60, 100

and 200% of the original total number of clustered genes) of randomly

simulated scattered genes are added. For sample j (j ¼ 1, . . . , 50) in a

scattered gene, the expression level is randomly sampled from the empirical

distribution of expressions of all clustered genes in sample j. This is our first

perturbation model of simulated data. This contains seven datasets, including

the base dataset without any scattered genes. These datasets are called Type I

perturbed data for later reference.

A total of 25 different parameter settings (percentage of scattered genes

and standard deviation of random Gaussian errors) in three types applied to

generate the simulated data.

Another perturbation model is introduced to evaluate robustness of clus-

tering methods against potential random errors introduced from experi-

mental procedures including sample acquisition, labeling hybridization

and scanning. For each element of the log-transformed expression matrix,

a small random error from normal distribution (SD ¼ 0.05, 0.1, 0.2, 0.4, 0.8,

1.2) is added. These are called Type II perturbed datasets in our analysis,

which has six datasets. Type III perturbation model is the one in which

scattered genes are added to Type II perturbed data. It is a combination of

Type I and Type II perturbation. In Type III we add 100% and 200% scattered

genes to the datasets in Type II perturbation. Therefore there are 12 datasets

in Type III. Combining all the three perturbation models, there are 25

datasets from the original clustered gene expression matrix. A tabular rep-

resentation of the schemes for simulated datasets is given in Table 3. All

these datasets are replicated 100 times which makes the total number of

simulated datasets for this study to 2500. Heatmaps of a simulated example

Table 2. Cross tabulation of clusters and functional annotation

F1 F2 F3 F4 F5 F6 F7

v1 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 137

v2 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 143

v3 2(0.52) 6(0.0005) 23(0) 0(1) 0(1) 0(1) 136

v4 0(1) 4(0.013) 5(0.074) 8(1.7E-9) 5(6.5E-5) 0(1) 115

v5 0(1) 1(0.34291) 0(1) 0(1) 0(1) 0(1) 56

vnoise 15 1 0 0 2 15 989

Crosss tabulation of cluster assignment and functional annotation. The corresponding

P-values are shown in parentheses.

Fig. 1. (A) Diagram of cluster simulation. (B) Heatmaps of simulated data

with increasing perturbations of experimental variability.

Table 3. Schematic representation of simulated data

Scattered

genes (%)

SD for random normal error added to each gene

0 0.05 0.1 0.2 0.4 0.8 1.2

0 H (I) H (II) H (II) H (II) H (II) H (II) H (II)

5 H (I)

10 H (I)

20 H (I)

60 H (I)

100 H (I) H (III) H (III) H (III) H (III) H (III) H (III)

200 H (I) H (III) H (III) H (III) H (III) H (III) H (III)
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with perturbations (scattered genes ¼ 100% and SD ¼ 0, 0.2, 0.4, 0.8 and

1.2) are shown in Figure 1.

3 RESULTS

We have studied six commonly used clustering methods including

hierarchical clustering, K-means, PAM, SOM, model-based clus-

tering and tight clustering for simulated datasets as well as real

microarray gene expression data. All the datasets are properly

pre-processed (filtering, missing value imputation and normaliza-

tion). Each gene vector is standardized to have mean 0 and SD 1

before gene clustering. The standardization makes Pearson correla-

tion and Euclidean distance equivalent. Performance of the methods

in simulated data is validated by our proposed weighted Rand index.

In the real data sets, the predictive accuracy plots of annotation

prediction are used for evaluation.

3.1 Simulated data

Performance of the clustering methods based on the simulated

data is presented in this section. Supplementary Figure 1 shows

heatmaps of clustering results of an example data set. The proposed

weighted Rand index given in Equation (2) is used for evaluation.

Mean and standard error of the index values over 100 replicated

datasets in each simulation setting is shown in Figure 2 for

comparison. A high weighted Rand index value for a clustering

method implies that the particular method is able to recover the

true underlying cluster structure and enjoys better performance.

As described in Supplementary Material, hierarchical clustering

can be implemented using single linkage, complete linkage or

average linkage. It is well-known that single linkage tends to

generate elongated clusters while complete linkage normally

obtains more spherical clusters. Supplementary Figure 2 gives

the results of different linkages of hierarchical clustering in simu-

lated data. Complete linkage is found to provide better results

consistently and will be used in hierarchical clustering hereafter.

It is also known that K-means (as well as PAM) is sensitive to

random initial values used for optimization. The more random

initial values searched, the better K-means clustering result can

be obtained. We tested 1, 100 and 1000 random initial values in

K-means and the results are shown in Supplement Figure 3. Clearly

K-means with 1 random initial value easily falls into an inadequate

local minimum and gives poor performance. Using 100 random

initial values gives similar result to 1000 random initial values.

In all analyses in this paper 100 random initial values are used

in the implementation of K-means and PAM.

From Figure 2, it is immediately seen that all the methods, except

for SOM, were able to recover the underlying cluster structure well

when no scattered genes and no perturbation exist (Fig. 2, 0% noise

in Type I). Therefore the comparison of the methods will be based

on how the performances are affected as the level of complexity

including number of scattered genes and degree of perturbation

increases.

From Type I simulated model, it is seen that hierarchical clus-

tering, K-means and PAM are very vulnerable to the presence of

scattered genes. The mean weighted Rand indexes drop steeply as

the percentage of noise genes increases (SOM already performed

poorly in the ideal well-separated case). Tight clustering and model-

based clustering are both very robust up to existence of 200%

scattered genes. In the Type II and Type III simulated models,

we see that SOM consistently performs far worse than all others.

Hierarchical clustering, K-means and PAM are relatively more

sensitive to the existence of scattered genes than random perturba-

tions (Fig. 2, Type I and II). In the Type II comparison, tight

clustering and model-based clustering start to drop when SD >
0.4 while K-means and PAM still perform well. This is because

when the experimental variabilities (SD) becomes large, tight clus-

tering and model-based clustering begin to consider some outlying

clustered genes as scattered genes which, in fact, is biologically

acceptable. In the Type III comparison, tight clustering and model-

based clustering performed equally well up to SD ¼ 0.4 even when

200% of scattered genes exist. To provide a fair evaluation, the true

number of clusters (K ¼ 15) was given to all the clustering methods

in the above comparison. We also note that when experimental

variabilities SD are large, model-based clustering performs even

worse than K-means and PAM. This reflects potential computation

Fig. 2. Weighted Rand index (on y-axis) for SOM, Hierarchical, K-means,

PAM, Mclust and Tight clustering results of simulated data. The means and

standard errors are presented.

Fig. 3. Prediction accuracy analysis plots in (A) yeast cell cycle; (B) yeast

environmental changes; (C) human cell cycle; (D) human lung cancer.
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difficulties in model-based clustering in application of a

complex data.

3.2 Real datasets

We have used four real datasets to compare the clustering methods

for functional predictions of the annotated genes. Prediction accur-

acy (described in the Methods section) is used for comparing the

clustering methods. Table 4 lists a summary of datasets used in our

analysis. See Supplementary Material for more detailed data

description and preprocessing.

The six clustering methods are implemented with K varying from

5 to 30 for a pooled analysis of functional predictions evaluation. A

cross tabulation of the tight clustering result with five clusters and

six functional categories, and the corresponding P-values are given
in Table 2; the predictive accuracy in Table 2 is calculated as

A5(0.01) ¼ (6 + 23 + 8 + 5)/(2 · 167 + 2 · 137) ¼ 6.9%. Overall

accuracy for each of the methods is estimated by pooling the results

with the number of clusters K ¼ 5, 6, . . . , 30. In Figure 3 the curves
of prediction accuracy (y-axis) of all six clustering methods versus

the total number of predictions made (x-axis) for varying p-value

thresholds d ¼ (10�2, . . . , 10�10,10�15,10�20) are presented for dif-

ferent datasets. In all four datasets, the predictive performance of

tight clustering is the best, followed by model-based clustering.

Consistent with the simulation study, SOM and hierarchical clus-

tering perform among the worst in the real datasets. We, however,

notice that the total number of predictions made by tight clustering

is much smaller than the other methods as many genes are assigned

to the scattered gene set in this method.

4 DISCUSSION

Compared with supervised machine learning (or classification)

problems, an empirical and unbiased comparison of clustering

methods has always been difficult. The underlying true clustering

assignment in a real data is generally unknown and the concept of a

cluster is not mathematically well-defined in unsupervised learning.

Very often a method works well in some datasets but may perform

poorly in other datasets owing to different data structure and

characteristics. In this paper we focused on the comparison of

gene clustering methods of microarray data and evaluated six

popular methods by both simulated and real datasets. In the simu-

lated data, various proportions of scattered genes and various

degrees of simulated experimental variabilities were simulated to

mimic the nature of a microarray data and to examine the robustness

of each clustering methods. A weighted Rand index was developed

to compare two clustering results with possible scattered genes and

to evaluate the simulated data. In the evaluation of the four real

datasets, a predictive accuracy plot was utilized to compare the

annotation prediction power of different clustering methods. To

the authors’ knowledge, this is the first comprehensive comparison

of popular gene clustering methods in microarray analysis. The

results not only provide practical guides to the application of

the clustering methods but also elucidate much insight behind

the algorithms.

In both simulated and real datasets, model-based clustering and

tight clustering consistently performed among the best with model-

based clustering slightly less robust in some situations (Fig. 2). This

is not surprising in light of the fact that these two methods allow a

set of scattered genes not being clustered which helps to outperform

other methods (K-means, PAM, hierarchical clustering, and SOM)

that assign all genes into clusters. It is worth noted that attempts for

estimating the number of clusters were usually not successful espe-

cially in datasets with many scattered genes and large perturbations.

As a result the correct number of clusters was supplied to all the

methods compared in simulated data.

Model-based clustering enjoys full probabilistic modeling and

rigorous statistical inference tools including BIC for selecting the

number of clusters and the complexity of covariance structure.

However, BIC criterion may in practice fail to select the correct

model even if the model assumptions are true. The problem is

2-fold. First, BIC is an approximate measure of the Bayesian pos-

terior probability. The performance of BIC depends on the goodness

of the approximation. Second, local optimum is usually obtained

when estimating the parameters in the model, making the estimation

of maximum likelihood and BIC measure vulnerable. Supplement-

ary Figure 4 shows histograms of estimated number of clusters using

BIC criterion in the replicated simulation data under various set-

tings. It indicates that when the number of scattered genes and

experimental variabilities (SD) increase, the probability that the

estimated number of clusters deviates from the truth (K ¼ 15)

becomes higher. In the comparative study of simulated data, the

correct number of clusters is given to each method. We, however,

still observed that the performance of model-based clustering

dropped steeply when SD becomes large in Figure 2 (Type II

and III). As discussed in more detail in Supplementary Material,

implementation of model-based clustering often needs special care

to avoid computational issues such as singularity and undesirable

local minimum.

Conceptually tight clustering can be viewed as a higher-order

machinery that can be built upon any other clustering method

(e.g. K-means in the original paper). Through evaluation of repeated

clustering on subsamples, tight clusters are sequentially generated

and the remaining genes are left as scattered genes. From the results

of simulated data, it was seen that the resampling evaluation helped

Table 4. Summary of real data sets

Organism, sample

perturbation and

reference

Dimension

of data

Annotation

Yeast; cell cycle;

Spellman et al.,

1998

1663 genes ·
77 samples

M/G1 boundary; Late G1,

SCB regulated; Late G1,

MCB regulated; S-phase;

S/G2-phase; G2/M-phase

Yeast;

environmental

changes; Causton

et al., 2001

1744 genes ·
45 samples

response to stress

Human; cell cycle;

Whitefield et al.,

2002

2570 genes ·
114 samples

G1/S; S; G2; G2/M; histone genes

human; lung

cancer;

Bhattacharjee

et al., 2001

1920 genes ·
203 samples

Keratin; metallothionein;

melanoma antigen family;

major histocompatibility

complex (MHC); interferon;

immunoglobulin heavy

constant; G antigen; collagen
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tight clustering to provide better robustness and better ability to deal

with scattered genes. On the other hand, tight clustering had the

tendency to include fewer clustered genes than the other methods

(Fig. 3). Two additional methods considering cluster stability by

resampling approach (consensus clustering, Monti et al., 2003 and

HOPACH, van der Laan and Pollard, 2003) were also evaluated and

presented in Supplementary Figure 5. Their inferior performance in

simulated data suggested that although clustering methods consid-

ering stability are preferred, the resulting performance still depends

on how the stability information is effectively utilized.

K-means and PAMwere found with similar performance which is

expected because PAM only replaces cluster centers with the

median points in the loss function ofK-means. They did not perform

as well as model-based clustering and tight clustering owing to their

inability of allowing a set of scattered genes. Compared with hier-

archical clustering and SOM, they consistently performed better and

provided better robustness. Hierarchical clustering and SOM are

known to provide better visualization of the clustering results while

at the same time they seem to have sacrificed performance (Figs 2

and 3). We especially noticed that SOM did not perform well even

in the well-separated simulated clusters with no scattered genes and

no perturbation (Fig. 2, 0% noise in Type I). Hierarchical clustering

although could perform well in this pure case, the method was very

sensitive to both the existence of scattered genes and perturbation.

In conclusion, tight clustering and model-based clustering are

recommended for gene clustering in expression profile. To date,

hierarchical clustering and SOM remain two of the most popular

gene clustering methods in many biological studies. Our compar-

ative evaluation, however, suggests cautious use of the two meth-

ods. If identifying biologically meaningful cluster patterns and

pursuing better annotation prediction are the primary goal and

data visualization is secondary, these two methods should be

avoided.

Our comparative study has its own limitation. There are many

more methods published and used in microarray analysis that we

cannot exhaust. In Supplementary Figure 5, we also performed

evaluation of simulated data on three other methods including

consensus clustering (Monti et al., 2003), HOPACH (van der

Laan and Pollard, 2003) and fuzzy c-means (Dembélé and Kastner,

2003). The simulation model in this paper applied a hierarchical

log-normal model. However, in real situation a heavy-tail or skewed

distribution may be more appropriate. Other types of inter-gene and

inter-sample correlations may also be considered. In real datasets,

we evaluated four representative datasets from yeast and human

with various kinds of sample perturbations while other datasets of

different types of organism and sample perturbations may be further

explored. Despite the above minor limitations, our comparative

study has elucidated much insight of the clustering methods and

provided a practical guideline for their applications to microarray

analysis.
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